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Executive Summary

We examined the potential use of standard optimization algorithms for the solution of
aquifer remediation problems. Costs for the removal of dissolved or free-phase
contaminants depend on aquifer properties, the chosen remediation technology, and
operational parameters (such as number of wells drilled and pumping rates). A cost
function must be formulated that may include actual costs and hypothetical penalty costs for
incomplete cleanup; the total cost function is therefore a measure of the overall effectiveness
and efficiency of the proposed remediation scenario.

In this study, the cost function is minimized by automatically adjusting certain
operational parameters. The impact of these operational parameters on remediation is
evaluated using a state-of-the-art three-phase, three-component flow and transport
simulator, which is linked to nonlinear optimization routines. The report demonstrates that
methods developed for automatic model calibration are capable of minimizing arbitrary cost
functions.

Two illustrative examples are presented. While hypothetical, these examples
demonstrate that remediation costs can be substantially lowered by combining simulation
and optimization techniques.  The second example on co-injection of air and steam also
make evident the need for coupling optimization routines with an accurate state-of-the-art
process simulator.  Simplified models are likely to miss significant system behaviors such
as increased downward mobilization due to recondensation of contaminants during steam
flooding, which can be partly suppressed by the co-injection of air.
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1 . Introduction

The design of a cleanup operation for a contaminated aquifer involves environmental,
hydrological, technical, and economic issues. The main task is to locate and characterize the
contaminant plume and to select an effective and efficient remediation technology. The
suitability of a proposed method depends on the location and geometry of the plume, the
hydrogeologic characteristics of the aquifer, the chemical properties of the contaminant, and
the overall remediation goal. Once a technology has been chosen, the operational scheme
and its parameters (for example, the number of wells and their pumping schedule) can be
optimized to reduce remediation costs.

Management of groundwater remediation by means of optimization techniques seeks to
maximize contaminant removal while minimizing capital, operating, and maintenance costs.
Furthermore, technical constraints and regulatory cleanup standards must be observed.
Using this approach to design cleanup operations for the remediation of dissolved or free-
phase contaminant plumes in the subsurface requires predictive modeling capabilities in
combination with nonlinear optimization techniques. Operational parameters can be
determined by iteratively minimizing an objective function that involves actual or
hypothetical cleanup costs. The procedure is similar to that used for automatic calibration of
a process model against field data (referred to as “inverse modeling”), where hydrogeologic
parameters are determined by minimizing the differences between the observed and
calculated system response.

The purpose of this study is to examine whether the combination of a state-of-the-art
simulation model and standard optimization techniques can be used to improve the design
of a remediation system. The intent is to provide a proof of principle rather than to solve an
actual remediation problem. Consequently, the study focuses on the numerical performance
of the simulation and optimization tools; only a limited effort has been made to develop
complex scenarios and realistic cost functions.

Computer programs have been developed at the Lawrence Berkeley National
Laboratory (LBNL) to solve forward and inverse problems in groundwater hydrology. We
make use of the iTOUGH2 code (Finsterle, 1999abc), which provides inverse modeling
capabilities for the nonsiothermal, three-phase, three-component flow and transport
simulator T2VOC (Falta et al., 1995), which is based on the general-purpose integral finite
difference code TOUGH2 (Pruess, 1991; Pruess et al., 1999).

A summary description of the T2VOC simulator is given in Section 2, followed by a
brief discussion of the optimization algorithms implemented in iTOUGH2 (Section 3). Two
illustrative examples are presented in this report. The first example (Section 4) simulates the
remediation of a large contaminant plume through an array of extraction wells. The
pumping rate in each well is optimized to reduce cleanup costs. The second example
(Section 5) examines the performance of thermally enhanced soil vapor extraction, where
the effectiveness of NAPL removal depends on steam temperature and the amount of co-
injected air. Conclusions from this preliminary demonstration can be found in Section 6.
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2 . Modeling Multiphase Contaminant Transport Using T2VOC

The computer code used in this study is T2VOC (Falta et al., 1995) for modeling
three-phase (gas, water, non-aqueous phase liquid (NAPL)), nonisothermal flow of water,
air, and a water-soluble volatile organic compound (VOC) in three-dimensional
heterogeneous porous media. T2VOC is an extension of the TOUGH2 general-purpose
simulation program (Pruess, 1991; Pruess et al., 1999), which uses the integral finite
difference formulation for solving fully coupled mass and energy balance equations.

Each of the three phases flows in response to pressure and gravitational forces
according to the multiphase version of Darcy's law, which includes the effects of relative
permeability and capillary pressure between the phases. Water properties in the liquid and
vapor state are calculated using steam table equations given by the International
Formulation Committee (IFC, 1967). Thermophysical properties of the NAPL phase (such
as saturated vapor pressure and viscosity) are calculated as functions of temperature, while
specific enthalpy and density are computed as functions of both temperature and pressure.
Gas phase thermophysical properties (including molecular diffusivities) are considered to
be functions of temperature, pressure, and gas phase composition. A general equation-of-
state is provided to compute the necessary NAPL/VOC thermophysical and transport
properties. Based on semi-empirical corresponding-states methods, the chemical
parameters are calculated as functions of critical properties such as the critical temperature
and critical pressure, which are readily available for many substances (Reid et al., 1987).
This approach makes T2VOC applicable to a variety of contamination problems involving
different NAPLs that are either denser or lighter than water and that have different vapor
pressures and solubilities.

For numerical solution, the balance equations are discretized in space based on an
integral finite difference formulation (Narasimhan and Witherspoon, 1976). Time is
discretized fully implicitly using first-order backward finite differences. Discretization
results in a set of nonlinear coupled algebraic equations which are solved simultaneously by
means of Newton-Raphson iterations. A conjugate gradient algorithm is used to solve the
linear equations arising at each iteration step (Moridis and Pruess, 1995).

For a detailed description of the physical processes, governing equations, and
numerical schemes employed in T2VOC, see Falta et al. (1992, 1995) and Pruess et al.
(1999).
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3 . Optimization Algorithms Implemented in iTOUGH2

As discussed in the introduction, iTOUGH2 combines the simulation capabilities of
T2VOC with optimization techniques to perform model calibration (inverse modeling) and
to support the design of remediation systems. In both applications, a performance measure
is either minimized or maximized by adjusting certain input parameters or design variables.
For example, model calibration consists of reducing the differences between the simulation
results and measured data (such as water potentials or temperatures) by adjusting the model
input parameters (such as the absolute permeability or thermal conductivity of the porous
medium). A cleanup operation can be improved by minimizing, for example, the
remediation time, which can be achieved by increasing pumping rates or steam temperature.
Increasing pumping rates or steam temperature, however, leads to higher energy costs.
Therefore, the objective function to be minimized should also reflect these costs in order to
obtain an optimal remediation design.

Solving an optimization problem thus requires two steps. First, a cost function has to
be defined as a function of T2VOC output variables, which in turn depends on certain
T2VOC input parameters. This function is usually highly nonlinear and can even be
discontinuous. Moreover, it contains contributions from different sources, which have to
be appropriately weighted against each other. Secondly, a minimization algorithm is
needed, capable of updating T2VOC input parameters in order to reduce the value of the
cost function. In the remainder of this section, we present the methods used to minimize the
cost function.

The cost function is denoted by Z and consists of a sum of cost contributions,
Z = Σz. The vector p contains all operational parameters (i.e., T2VOC input parameters)
that are automatically adjusted to minimize Z. The iterative minimization of Z involves
computing a correction vector ∆pk such that the new parameter set pk+1 = pk + ∆pk leads to
a reduction in the cost function, Zk+1 < Zk, at each iteration k. A number of algorithms are
available to solve nonlinear minimization problems (see, for example, Gill et al. (1981)).
They differ in their strategy to calculate ∆pk. Some methods require the evaluation of partial
derivatives of the cost function with respect to the parameters. Many of the methods are
specialized to efficiently deal with nonlinear least-squares problems, where the objective
function is a sum of squared weighted residuals. The cost functions considered here are
likely to be nonquadratic, and different, less efficient methods may need to be applied.
Table 1 summarizes the minimization algorithms implemented in iTOUGH2. As they are
able to track more general problems, the algorithms become less efficient, i.e., they require
more solutions of the forward problem, which involves simulating the cleanup operation by
solving the corresponding multiphase flow and transport equations. For a detailed
description of the algorithms and their implementation, the reader is referred to Finsterle
(1999a).

Many of the forward runs conducted to evaluate the cost function are independent from
each another and can thus be performed in parallel. With the exception of Simulated
Annealing, all methods shown in Table 1 are implemented for parallel execution using
message passing based on the Parallel Virtual Machine concept (PVM; Geist et al., 1994).
For details, see Finsterle (1998).
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Table 1. Minimization Algorithms Implemented in iTOUGH2

Minimization algorithm Description Advantages and
disadvantages

Gauss-Newton* ∆p = − JTWJ( )−1
JTWz

Efficient for linear least-
squares problems only.

Levenberg-Marquardt* ∆p = − JTWJ + λI( )−1
JTWz Efficient for nonlinear least-

squares problem; requires
derivatives.

Downhill Simplex Minimum approach through
sequence of reflections,
expansions, and contractions
of an n+1 simplex.

No assumptions made about
form of cost function;
relatively inefficient.

Simulated Annealing Take random steps of
decreasing average size;
accept uphill steps with
certain, decreasing
probability.

No assumptions made about
cost function; may escape
local minima; inefficient.

Grid Search Evaluate cost function in
entire parameter space.

Complete information about
cost function; very
inefficient.

* J Jacobian matrix; W: Weighting matrix; I: Identity matrix; z: Residual/cost vector

Optimization problems are susceptible to being ill-posed, which leads to nonunique or
unstable solutions. If multiple parameter sets yield nearly identical values of the
performance measure at or near the minimum, the solution is nonunique. While
nonuniqueness is a serious deficiency if estimating hydrogeologic parameters (inverse
modeling), the fact that multiple solutions may exist is of little practical concern for cost-
minimizing optimization problems such as the ones discussed here. A cost-effective
remediation design is an acceptable solution even if additional, equally favorable
configurations may exist. This must be distinguished from the potential presence of
(multiple) local minima, representing sub-optimal solutions. Note that the presence or
absence of local minima is a characteristic of the cost function and the choice of the
parameters subjected to optimization. However, the presence of local minima does not
mean that the optimization problem is ill-posed. The user must simply select an appropriate
minimization approach to either detect, avoid, or escape local minima.

As mentioned above, nonuniqueness is not considered problematic by itself.
However, nonuniqueness is often accompanied by instability, where vastly different
solutions are obtained as a result of small changes in the definition of the cost function.
Such instabilities should be avoided by a careful formulation of the cost function and
deliberate selection of the design variables to be optimized.

The most important element of the optimization approach discussed here is the
numerical process model itself, because the optimal design is calculated based on a
numerical prediction of the cleanup operation. This prediction is based on a model that is
uncertain. Sources for errors include: (1) unknown or uncertain aquifer properties (e.g.,
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spatial distribution of permeability and adsorption coefficients); (2) incomplete process
description (e.g., neglect of multicomponent diffusion in gas phase); (3) model
simplifications (e.g., simulating three-dimensional flow using a two-dimensional model;
specifying homogeneous model domains despite the presence of multi-scale spatial
variability of formation properties); and (4) uncertainty in initial and boundary conditions
(e.g., uncertain recharge rates; uncertain location and extent of contaminant plume). The
solution to the optimization problem is likely to be (significantly) affected by a change in
the underlying flow and transport model. Therefore, site characterization is a very
important aspect of the overall optimization problem. Sufficient data must be collected to be
able to determine key hydrogeologic properties. These are the properties that most strongly
affect the predicted fate of the contaminants during the simulated cleanup operation.

Site characterization through monitoring or active aquifer testing is in itself an
optimization problem, in which data of sufficient sensitivity and quality must be obtained to
yield parameter estimates of acceptably low uncertainty. In summary, test design,
monitoring, inverse modeling, and remediation design are strongly related and pose an
overall optimization problem. Recall that this study deals only with the computational
aspects of finding cost-effective design variables for a given cleanup operation and a given
model.
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4 . Example No. 1: Remediation of Dissolved TCE Plume

Consider a confined aquifer of 10 m uniform thickness. The aquifer is heterogeneous
with a mean permeability of 10-11 m2, a standard deviation of one order of magnitude, a
correlation length of 30 m along the main west-east (X) flow direction, and a correlation
length of 10 m in the north-south (Y) direction. The log-permeability field shown in Figure
1 was generated using Sequential Indicator Simulations (Deutsch and Journel, 1992).
Effective porosity is 0.4. A natural hydraulic gradient of 0.01 is imposed across the model
domain of 200 m length; no-flow boundaries are prescribed along the northern and
southern sides of the model. The model domain is discretized into 40 × 25 × 1 = 1,000

gridblocks with dimensions 5 m × 5 m × 10 m.

We simulated a potential contamination of the aquifer by releasing 100 kg of
trichloroethylene (TCE) at X = 47.5 m and Y = 67.5 m (the spill location is indicated by a
square in Figure 1). TCE has a water solubility of 1.51 × 10-4 [mole fraction].
Consequently, the spill is assumed to be completely dissolved as the contaminant plume
spreads. Figure 2 shows the concentration of TCE dissolved in the aqueous phase four
months after the spill. The bulk of the TCE mass follows a relatively narrow high-
permeability channel, but significant amounts of TCE disperse in longitudinal and
transverse directions as a result of aquifer heterogeneity. The contaminant plume eventually
bifurcates into multiple fingers.

In a very simplified scenario, we assume that the contamination will be remediated by
drilling six wells approximately aligned with the plume axis; the pattern is shown in Figure
2. This requires that some (albeit incomplete) information about the location of the
contaminant plume is available either through sampling or preliminary modeling. We
further assume that the costs for remediating the site are directly proportional to the total
amount of contaminated water being extracted from the subsurface. In other words, the
cost function to be minimized is simply given by

Z = qit
i=1

6

∑ (1)

where qi  is the constant pumping rate in Well i , and t  is the time required to extract a pre-
defined amount of TCE, for example 95% of the total spill.

It is obvious that this scenario requires significant refinement in order for it to be
realistic. For example, the cost function could be expanded to include (1) drilling costs,
whereby a well should not be drilled if the pumping rate is less than a certain threshold
value, (2) concentration-dependent treatment costs, (3) capital costs as a function of overall
remediation time. In a variation of the cleanup operation, one could consider time-
dependent pumping rates, whereby pumping is reduced or wells are shut down as soon as
the TCE concentration reaches a certain low value. Treated waste water could be reinjected
to impose hydraulic controls on the contaminant plume. Furthermore, different criteria for
stopping remediation could be applied. Instead of requesting that a certain (large) amount of
TCE be removed (as in this study), one could require that the TCE concentration at a
nearby drinking water well is not to exceed a certain level. Even more stringent would be
the requirement to comply with drinking-water standards everywhere within the modeled
domain. The optimal solution is likely to (potentially strongly) depend on the chosen
remediation target, the factors entering the cost function, and the details of the proposed
cleanup operation (i.e., the design variables).

If each well is pumping at a constant rate of 1 kg s-1, an initial simulation shows that 95%
of the spilled TCE would be recovered within t  = 240 days. Based on Eq. (1), the “cost”
for this initial scenario is calculated to be 124,800 units.
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Figure 1. Log-permeability field of synthetic, two-dimensional, confined aquifer. 100
kg of TCE are spilled at the location marked by the square. The locations of six remediation
wells are also indicated.
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Figure 2. Distribution of dissolved TCE four months after the spill.
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Using iTOUGH2, the pumping rates in each of the 6 wells were automatically adjusted
in an attempt to reduce the cost function. The results obtained with four different
minimization algorithms are summarized in Table 2. All algorithms were able to reduce the
cost function, albeit to various degrees and coming up with different optimal pumping
schedules—the cost function obviously exhibits many local minima and the solution is
nonunique, as expected. The Gauss-Newton algorithm was quickly trapped in a local
minimum. Nevertheless, requiring only a few simulations, the cost function was
considerably reduced, yielding a suboptimal solution with a relatively low total pumping
rate and a correspondingly long cleanup time. The generality of the Levenberg-Marquardt
algorithm (even though designed to minimize nonlinear least-squares functions) was able to
further reduce costs to a value that is approximately half of that obtained with the original
scenario. The Downhill Simplex algorithm performs well in this problem, arriving at even
lower costs using a relatively small number of forward simulations. Finally, Simulated
Annealing was able to come up with a pumping schedule that yields the smallest costs.
However, a very large number of simulations was required to arrive at the solution. It is
interesting to note that the cleanup time with the optimized pumping schedule is
approximately the same as with the original design, with a 60% reduction in the total
amount of water being pumped.

Table 2. Optimized Pumping Schedules, Cleanup Times, and Costs

Pumping rate [kg/s]

MA* # of
runs

Time
[day]

Cost
function

Well
1

Well
2

Well
3

Well
4

Well
5

Well
6

Total

- 1 240 124,800 1.00 1.00 1.00 1.00 1.00 1.00 6.00

GN 15 340 78,800 - 1.25 0.63 0.13 1.11 0.89 4.01

LM 133 250 61,400 0.49 1.52 - 0.14 0.64 - 2.79

DS 89 190 58,700 0.21 1.95 0.27 - 1.13 - 3.56

SA 1224 250 53,300 0.15 1.20 - - 0.91 0.17 2.43

* Minimization algorithm:
GN = Gauss-Newton; LM = Levenberg-Marquardt; DS = Downhill Simplex; SA = Simulated Annealing
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The strategy and performance of the four minimization algorithms considered here is
visualized in Figure 3. Each square represents one T2VOC simulation. Note that the
Gauss-Newton and Levenberg-Marquardt methods require n  simulations at each iteration
to numerically evaluate the sensitivity matrix, where n  is the number of adjustable
parameters. The cost function may temporarily increase as unsuccessful uphill steps are
proposed by the Levenberg-Marquardt algorithm. The Downhill Simplex algorithm shows
cost increases prior to a contraction of the simplex. The random nature of Simulated
Annealing leads to many runs with higher costs than previous simulations. These higher
costs are sometimes accepted with a decreasing probability, allowing the algorithm to
escape local minima.
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Figure 4 shows the amount of dissolved TCE removed from the aquifer as a function
of pumped groundwater volume for the initial design (with a rate of 1 kg s-1 in each of the
six wells) and for the optimum design determined by Simulated Annealing. Recall that
optimization occurred by minimizing the total volume pumped at the time when 95 kg of
TCE have been removed. The cost reduction is indicated by the horizontal arrow in Figure
4. Using the pumping rates proposed by the optimization model, more TCE is removed
with each cubic meter of groundwater as compared to the initial design. However, the
changing width of the gap between the two curves indicates that a different optimal solution
would be obtained if the remediation criterion were changed. However, it appears that the
automatically determined pumping schedule remains superior to the initial design even if the
threshold of acceptable residual TCE is reduced.
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10-1

100
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Initial design
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Figure 4. Mass of dissolved TCE left in the aquifer as a function of pumped volume for
the initial and optimized designs. The pumping schedule was optimized to minimize the
total pumped volume when 5 kg of TCE are left in the aquifer.
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Figure 5 shows the remediation process using the initial pumping schedule (left
column) in comparison with the optimized design (right column). The uniform pumping
rates of the initial design lead to an area of relative stagnation between Wells 1, 2, 4, and 5.
Moreover, pumping in Well 4 has the effect of pulling the plume into a previously
uncontaminated region of the aquifer. The symmetry is broken in the optimized design,
where the largest rates are assigned to the wells in the center of the plume, i.e., Wells 2 and
5. Wells 1, 3, 4 and 6 could probably be shut down without significant loss in overall
remediation effectiveness. This would save additional drilling costs, which were not
considered in the cost function (1), making the design even more favorable.

It should be noted that the optimized design targets the bulk of the TCE plume, i.e., it
efficiently remediates the high-concentration area while neglecting the low-concentration,
downstream tail of the plume. This is a consequence of the chosen remediation criterion,
which only requires a reduction of the total TCE in the aquifer. Additional terms would
have to be added to the cost function in order to ensure that no contaminated water is able to
escape downstream.

This first example illustrates that the optimization algorithms implemented in
iTOUGH2 can be used to improve remediation designs by automatically minimizing a cost
function. While the cost function chosen here is extremely simple, its complexity can be
increased arbitrarily. A key feature of this approach is that the costs are calculated based on
an accurate process model simulating flow and transport in the aquifer for each remediation
scenario. One should realize, however, that the optimization relies on accurate
characterization data. If the permeability structure of the aquifer or the initial contaminant
distribution are unknown, the optimal pumping schedule is not guaranteed to be as
successful when implemented in the field.
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Figure 5. Distribution of dissolved TCE after 10, 30, 100, and 240 days of continuous
pumping with the initial pumping schedule (left column) and the optimized pumping
schedule (right column). The pumping rate is indicated at each well.
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5 . Example No. 2: NAPL Removal by Combined Air-Steam Injection

The widely used soil vapor extraction method for the removal of volatile NAPLs from
the unsaturated zone is often inefficient and requires long remediation times. Steam
injection is a means to increase NAPL volatilization, thus increasing the mobility of the
contaminant by inducing a phase change. Even residual NAPL contamination in low-
permeability lenses can be mobilized and successfully transported to an extraction well.
However, since the propagation of the thermal front is retarded compared to the steam
front, the volatilized contaminant often recondenses as it encounters cooler regions. High
NAPL saturations may build up at these condensation fronts, making the NAPL
sufficiently mobile for it to be transported downwards by gravity. This process reduces the
efficiency of thermally enhanced soil vapor extraction systems and may even lead to an
unwanted mobilization of contaminants towards the water table.

Recondensation of volatilized NAPL can be partly suppressed by co-injection of a
noncondensible gas such as air, increasing advective transport of volatile contaminants to
the extraction well. A laboratory experiment has been performed in the VEGAS facility at
the University of Stuttgart, Germany, to study thermally enhanced soil vapor extraction
using steam/air mixtures (Betz, 1998; Betz et al., 1998). We use a configuration similar to
that of the VEGAS experiment to perform our synthetic optimization study.

The layout is shown in Figure 6. The model domain of dimensions 1.0 m × 0.1 m ×
0.75 m represents a vertical test cell filled with coarse sand with a lens of finer sand built
into it (solid box). A stochastic, spatially correlated, anisotropic permeability field is
generated to induce heterogeneity. Initially, the sand is at residual water saturation. TCE at
residual NAPL saturation is emplaced (dash-dotted box), partly penetrating the sand lens.
Steam and air are injected at the left-hand side boundary between a depth of Z = -0.3 and
-0.2 m, and a vertical extraction well is installed at X = 0.875 m to a depth of Z = -0.5 m.
Input parameters are summarized in Table 3.

Table 3. Input Parameters for Simulation of Thermally Enhanced Soil Vapor
Extraction Experiment
Parameter Coarse sand Fine sand

Mean log-permeability [m2] -9.0 -11.0
Porosity 0.42 0.42
Rock grain density [kg m-3] 2650 2650
Rock grain specific heat [J kg-1 °C-1] 840 840

Heat conductivity [W m-1 °C-1] wet
dry

1.60
0.35

1.60
0.35

Relative permeability: Stone (1970); Capillary pressure function: Parker et al. (1987)
Residual water saturation 0.1 0.1
Residual NAPL saturation 0.1 0.1
Residual gas saturation 0.01 0.01
n-parameter 4.0 4.0
αgas-NAPL [m

-1] 15.0 5.0

αNAPL-water [m
-1] 150.0 50.0

Initial conditions
Initial gas pressure [Pa] 101300 101300
Initial water saturation 0.1 0.1
Initial NAPL saturation in dash-dotted box 0.1 0.1
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Figure 6. Layout of test cell experiment for studying thermally enhanced soil vapor
extraction.

Figure 7 shows the NAPL saturation after 12, 30 and 60 minutes of pure steam
injection (left column) and combined injection of steam and air (right column). If only
steam is used to thermally enhance volatilization and contaminant removal, recondensation
of TCE at the steam front leads to the appearance of a free NAPL phase near the bottom of
the test cell. To avoid this potentially dangerous side-effect of steam flooding, a penalty
term is added to the cost function. The appearance of TCE as a free NAPL phase near the
bottom of the test cell will lead to an appropriately weighted increase in the cost function.
Any parameter combination that leads to downwards NAPL mobilization is therefore
rejected by the minimization algorithm.

Figure 7 also shows that the co-injection of air enables increased removal of TCE from
the low-permeable sand lens, whereas the scenario with steam injection simply volatilizes
and recondenses TCE within the lens.
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Figure 7. Distribution of free-phase TCE after 12, 30, and 60 minutes after injection of
pure steam (left column) and a mixture of steam and air mixture (right column).



16

The overall approach to such an optimization problem is demonstrated using the
following, generic cost function:

Z = a ⋅ MTCE + b ⋅ MNAPL + Csteam + Cair (2)

The first term in (2) represents residual contamination, where MTCE  is the total mass
of TCE (volatilized, dissolved, or in NAPL phase) left in the test cell after 1 hour of soil
vapor extraction. The second term is a penalty term for NAPL that potentially reaches the
water table as a result of mobilization and recondensation effects. The variable MNAPL  is
the NAPL volume accumulated in the bottom 10 cm of the test cell. Csteam and Cair  are the
costs to generate high-enthalpy steam and to inject air, respectively. Finally, the coefficients
a and b are used to appropriately weigh the different contributions to the total cost function.

The weighting coefficients a and b must (and can) be determined in any real application
by means of an economic model, where monetary values are assigned not only to actual
costs but also to potential benefits or damages. In case they remain uncertain, a sensitivity
study can be performed to examine the robustness of the design to changes in the
assumptions of the economic model. In the current demonstration, no effort has been made
to find a realistic basis for the choice of these coefficients. The values used are: a = 10 cost
units per kg of TCE left in the test cell, b = 500 cost units per liter of NAPL encountering
the bottom of the test cell, Csteam = 0.0014 cost units for increasing specific steam enthalpy
by 1 kJ, and Cair  = 200 cost units for increasing the air injection rate by 1 g/s.

The two design parameters adjusted are the enthalpy of the injected steam, esteam, and
the air injection rate, qair. Note that specific steam enthalpies of 2677 and 2875 kJ kg-1 refer
to injection of pure (dry) steam at 100 °C and 200 °C, respectively. Enthalpies between
419 and 2677 kJ kg-1 indicate that a certain fraction of the injected water is in liquid form
(wet steam) at a temperature of 100 °C. The enthalpy is therefore a measure of the so-called
steam quality. In these simulations, the steam injection rate is held constant at 0.8 g s-1.

We examined the cost function in the two-dimensional parameter space in the ranges
0 < qair< 0.1 g s-1 and 2200 < esteam < 2875 kJ kg-1. Figure 8 shows contour plots of the
cost function and its individual contributions. The simple linear cost model for the
production of high-enthalpy steam and for injecting air is shown in Figure 8a. In reality,
this cost function is likely to be nonlinear and may even be discontinuous (for example., if
a second pump must be purchased to reach a higher injection rate). Figure 8b shows the
term that penalizes downward migration of NAPL. The plot shows that injection of air at a
rate higher than about 0.25 g s-1 successfully prevents any significant recondensation of
TCE at the steam front that bypasses the fine sand lens near the bottom of the test cell.
Increasing steam enthalpy leads to higher NAPL volatilization and thus requires slightly
higher air injection rates to avoid NAPL accumulation at the bottom. Figure 8c shows that
more TCE is removed from the test cell with increasing steam enthalpy and increasing air
injection rate. The relationship is almost linear. Finally, Figure 8d shows the total cost
function (see Equation 2).

The combination of all terms leads to a low-cost region in the parameter space near
esteam = 2550 kJ kg-1 and qair = 0.35 g s-1. This minimum is surrounded by regions where
steam enthalpy is too low for efficient NAPL volatilization, air injection rate is too low to
prevent unwanted recondensation, and enthalpy and injection rate are too high, producing
generation costs that cannot be compensated by a corresponding increase in remediation
efficiency. It is obvious that the location of this minimum depends on the form of the cost
function and the weighting coefficients.



17

The contour plot shown in Figure 8d (generated using the grid search option of
iTOUGH2) provides complete information about the optimization problem at hand.
However, grid search is usually prohibitive if more than two parameters are to be
determined. We therefore examined the performance of the Levenberg-Marquardt
algorithm, which calculates the cost function (and its gradient) only at a few discrete points
in the parameter space. Starting from three different points in the parameter space, the
minimum was identified within a few iterations, requiring significantly fewer simulation
runs than the grid search method.
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Figure 8. Contour plots of cost terms as a function of steam enthalpy and air injection
rate. The optimal design parameters minimize the total costs. The minimum was identified
by the Levenberg-Marquardt algorithm within a few iterations, regardless of the starting
point (indicated by numerals).
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6 . Summary and Conclusions

We examined the potential use of standard optimization algorithms for the solution of
groundwater management problems. A cost function measures the effectiveness and
efficiency of a proposed remediation scenario. The cost function is minimized by
automatically adjusting certain operational parameters (such as pumping rates). The impact
of these operational parameters on remediation is evaluated using a sophisticated three-
phase, three-component flow and transport simulator (T2VOC). Changes in operational
parameters are propagated through the process model, affecting the fate of contaminants
and eventually the cost function. The minimum of the cost function is identified by
iTOUGH2 using strategies that are characteristic of the chosen minimization algorithm.

We demonstrated that the minimization algorithms implemented in iTOUGH2 are able
to determine optimal remediation parameters. The combination of simulation and
optimization techniques provides the capability to simulate the complex processes
governing the remediation of NAPL-contaminated aquifers, and the flexibility to specify
and minimize arbitrarily complex cost functions.

The robustness of the optimal solution remains to be investigated. Specifically, the
amount of characterization data required to perform reliable predictions must be determined.
Uncertainties in hydrologic parameters as well as incomplete knowledge about the source
and distribution of the contaminants may strongly affect the predicted performance of a
proposed cleanup operation and thus affects the accuracy of the calculated cost function.
Note, however, that these difficulties are common to all methods that try to optimize aquifer
remediation
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